A rapid real-time quantitative PCR assay to determine the minimal inhibitory extracellular concentration of antibiotics against an intracellular Francisella tularensis Live Vaccine Strain

نویسندگان

  • Ronit Aloni-Grinstein
  • Ohad Shifman
  • Shlomi Lazar
  • Ida Steinberger-Levy
  • Sharon Maoz
  • Raphael Ber
چکیده

Francisella tularensis is a highly virulent facultative intracellular bacterium. The lack of a safe and efficient vaccine makes antibiotics the preferred treatment. F. tularensis antibiotic susceptibility tests are based on the in vitro standard CLSI-approved microdilution method for determining the MIC. However, limited data are available regarding the minimal inhibitory extracellular concentration (MIEC) needed to eradicate intracellular bacteria. Here, we evaluated the MIEC values of various WHO-recommended antibiotics and compared the MIEC values to the established MICs. We describe a rapid 3-h quantitative PCR (qPCR) intracellular antibiogram assay, which yields comparable MIEC values to those obtained by the classical 72-h cfu assay. This rapid qPCR assay is highly advantageous in light of the slow growth rates of F. tularensis. Our results showed that the MIECs obtained for doxycycline, chloramphenicol and ciprofloxacin were indicative of intracellular activity. Gentamicin was not effective against intracellular bacteria for at least 32 h post treatment, raising the question of whether slow-penetrating gentamicin should be used for certain stages of the disease. We suggest that the qPCR intracellular antibiogram assay may be used to screen for potentially active antibiotics against intracellular F. tularensis as well as to detect strains with acquired resistance to recommended antibiotics.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A new dye uptake assay to test the activity of antibiotics against intracellular Francisella tularensis

Francisella tularensis, a facultative intracellular bacterium, is the aetiological agent of tularaemia. Antibiotic treatment of this zoonosis is based on the administration of a fluoroquinolone or a tetracycline for cases with mild to moderate severity, whereas an aminoglycoside (streptomycin or gentamicin) is advocated for severe cases. However, treatment failures and relapses remain frequent,...

متن کامل

Simple and Rapid Detection of Yersinia Pestis and Francisella Tularensis using Multiplex-PCR

Background: Yersinia pestis and Francisella tularensis cause plague and tularemia, which are known as diseases of the newborn and elderly, respectively. Immunological and culture-based detection methods of these bacteria are time-consuming, costly, complicated and require advanced equipment. We aimed to design and synthesize a gene structure as positive control for molecular detection of these ...

متن کامل

Development and Evaluation of Real-Time RT-PCR Test for Quantitative and Qualitative Recognition of Current H9N2 Subtype Avian Influenza Viruses in Iran

Avian influenza H9N2 subtype viruses have had a great impact on Iranian industrial poultry production economy since introduction in the country. To approach Rapid and precise identification of this viruses as control measures in poultry industry, a real time probe base assay was developed to directly detect a specific influenza virus of H9N2 subtype -instead of general detection of Influenza A ...

متن کامل

Francisella tularensis infection-derived monoclonal antibodies provide detection, protection, and therapy.

Francisella tularensis is the causative agent of tularemia and a potential agent of biowarfare. As an easily transmissible infectious agent, rapid detection and treatment are necessary to provide a positive clinical outcome. As an agent of biowarfare, there is an additional need to prevent infection. We made monoclonal antibodies to the F. tularensis subsp. holarctica live vaccine strain (F. tu...

متن کامل

IL-10 restrains IL-17 to limit lung pathology characteristics following pulmonary infection with Francisella tularensis live vaccine strain.

IL-10 production during intracellular bacterial infections is generally thought to be detrimental because of its role in suppressing protective T-helper cell 1 (Th1) responses. Francisella tularensis is a facultative intracellular bacterium that activates both Th1 and Th17 protective immune responses. Herein, we report that IL-10-deficient mice (Il10(-/-)), despite having increased Th1 and Th17...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2015